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Abstract

This paper presents the generalisation of a well documented two-dimensional shear deformable laminated shell
theory [Compos. Struct. 25 (1993) 165] that, based on a fixed number of unknown variables, was initially proposed for
laminates made of specially orthotropic layers only. The theory is here specialised for laminated plates but is able to
encompass monoclinic layers in a general multilayered configuration. Moreover, it is able to account for the interla-
minar continuity of both displacements and transverse shear stresses. Higher-order effects, as shear deformation and
rotary inertia, are naturally included into the formulation. In order to obtain the relevant governing differential
equations, both Hamilton’s variational principle and a recently proposed vectorial approach [Compos. Engng. 3 (1993)
3] have been independently used. The effectiveness of the present model is tested numerically by comparing its results
with exact three-dimensional elasticity results obtained under the particular condition that the plates vibrate in cy-
lindrical bending. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The two-dimensional (2D) laminated plate theories available in the literature are the so-called layer-wise
theories, the number of the degrees of freedom of which depends on the number of layers, and theories that
use a fixed number of degrees of freedom regardless of the number of layers involved. It appears that the
first attempts to incorporate interlaminar stress continuity into a displacement-based, shear deformable,
laminated plate model of the later class are due to Sun and Whitney (1973) and Chou and Carleone (1973).
Both studies assumed a displacement field similar to the displacement approximation used for the so-called
uniform shear deformable plate theory (USDPT) (Yang et al., 1966; Whitney and Pagano, 1970). However,
though Chou and Carleone (1973) used the USDPT displacement field throughout the whole thickness of
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the laminate, Sun and Whitney (1973) assumed such a displacement field in a layer-wise sense. By ac-
counting for the interlaminar continuity of both displacements and transverse shear stresses, Sun and
Whitney (1973) were next able to express the plate energy functional in terms of five degrees of freedom
only, but they did not present explicit expressions of the corresponding equations of motion.

The leading assumption in Chou and Carleone (1973) was the simplification that transverse shear
stresses are distributed uniformly throughout the thickness of a laminated plate. This assumption, led Chou
and Carleone (1973) to an indirect, a posteriori, modification of the governing differential equations of
USDPT that improves displacement and stress predictions. It should be noted, however, that the im-
provement in the performance of the USDPT was detected by means of comparisons with exact elasticity
results obtained for cross-ply laminates only subjected to cylindrical bending (Pagano, 1969). Although the
theoretical models involved in both Sun and Whitney (1973) and Chou and Carleone (1973) appear to be
applicable to laminates having general angle-ply stacking patterns, neither of the related analyses was
applied beyond the relatively simple pattern of a cross-ply lay-up.

Di Sciuva (1986) introduced a five degrees of freedom, USDPT-based laminated plate model which,
upon assuming a through-thickness piecewise linear distribution of the in-plane displacements in each layer,
allows the interlaminar continuity of both displacements and transverse shear stresses to be satisfied.
Though the model appeared to be equivalent to that of Chou and Carleone (1973), all the relevant as-
sumptions were done ab initio and the governing equations were consistently obtained, on a variational
basis, together with the related boundary conditions. This model (Di Sciuva, 1986) was introduced for
plates made of specially orthotropic layers. Further results and improvements were subsequently presented
in Di Sciuva (1987, 1992), He et al. (1993) and He and Ma (1994), but again numerical applications did not
proceed beyond the cross-ply stacking pattern. It should be noted that the models presented in all (Sun and
Whitney, 1973; Chou and Carleone, 1973; Di Sciuva, 1987) are unable to inherently satisfy the shear
traction boundary conditions imposed on the lateral (top and bottom) plate planes and, therefore, require
the use of transverse shear correction factors. Contrary to this, the relevant models introduced by He et al.
(1993) and He and Ma (1994) appear capable to satisfy zero shear traction boundary conditions on those
lateral surfaces and, hence, they avoid the undesirable implications of shear correction factors. These
models, introduce however a considerable number of additional algebraic equations, which are coupled
with the differential equation of motion and have to be solved on an iterative basis.

The so-called parabolic, shear deformable plate models fulfil the zero shear traction lateral boundary
conditions at the top and at the bottom of the laminate and hence avoid the use of transverse shear cor-
rection factors. Their original version (Bhimaraddi and Stevens, 1984; Reddy, 1984; Soldatos, 1988) makes
also use of five degrees of freedom but violates the interlaminar stress continuity conditions. One of the first
attempts to account for a parabolic distribution of the transverse shear stresses and simultaneously to fulfil
their interlaminar continuity requirements, appears to be due to Ren (1986a,b). This static model that was
later extended (Ren and Owen, 1989), to encompass also dynamic analysis of cross-ply and angle-ply
laminates, made finally use of seven degrees of freedom. Some numerical results for angle-ply stacking
patterns were also obtained on the basis of that model (Ren and Owen, 1989) but no comparisons with
relevant exact elasticity results were made. Successful attempts towards the development of a five degrees of
freedom parabolic shear deformable plate theory (PSDPT) that also fulfils the continuity requirements of
the interlaminar shear stresses were later presented in Lee et al. (1990, 1993, 1994), Savithri and Varadan
(1990a,b), Di Sciuva (1992) and Cho and Parmerter (1992, 1993) none of which however presented nu-
merical results dealing with the dynamics of angle-ply laminated plates.

At this point, the recent studies by Librescu and Lin (1996, 1999) and Librescu et al. (1997) should be
mentioned. These studies were mainly oriented to substantiate the implications of the violation of the
interlaminar shear stress continuity requirements on the predictions of the mechanical response charac-
teristics of certain simply supported plates and shells made of transversally isotropic layers. Librescu and
Lin (1996), in particular, showed how the global characteristics response, obtained by means of a model
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that violates these continuity requirements, can result into an underprediction/overprediction of the cor-
responding global responses based on (what should be) a more accurate model that fulfils these continuity
requirements. These observations that were also reinforced in relevant studies by Soldatos and Messina
(1998) and Messina and Soldatos (1999a,b), suggested that further relevant investigations would be useful
in connection with the dynamic behaviour of angle-ply laminates.

In this context, this paper, initially presents a further generalisation of a well documented displacement-
based 2D shear deformable laminate theory (Soldatos and Timarci, 1993) in a manner that makes possible
the consideration of continuous interlaminar stresses in angle-ply laminates. Accordingly, the theory, which
uses only five unknown displacement functions, is able to account for the continuity of interlaminar shear
stresses in laminated plates made of monoclinic layers in a general stacking pattern of material arrange-
ment. Its governing equations of motion are consistently obtained by using a new generalised vectorial
approach (Soldatos, 1993) but also by applying Hamilton’s variational principle. In the later case the full
set of relevant boundary conditions are also obtained.

The effectiveness of such an extended 2D dynamical model thus obtained is then verified by comparing
its natural frequency predictions with corresponding predictions due to exact three-dimensional (3D)
elasticity analysis. Such exact, 3D elasticity results are obtained by carrying out an appropriate dynamic
extension of the corresponding static, cylindrical bending solution due to Pagano (1970). These compari-
sons yield some valuable physical insights that, due to ascertained underpredictions/overpredictions of
natural frequencies between the presented model and the exact 3D one, illustrate a necessity to look for new
shape functions that in some cases might model more accurately the in-plane displacement distributions
throughout the thickness of a laminate.

2. Theoretical modelling

Consider a rectangular plate having a constant thickness /, axial length L, and width L, (Fig. 1). The in-
plane and normal to the middle-plane co-ordinate length parameters are denoted with x, y and z, re-
spectively, whereas U, V and W represent the corresponding displacement components. Fig. 1 depicts two
particular cases of laminated plates, with odd or even number of layers that will later be employed in
example applications. These are the cases of plates having a so-called regular symmetric and regular an-
tisymmetric angle-ply lay-up, respectively; they both involve laminates made of generally orthotropic layers
of the same thickness, #/L (Jones, 1975). Accordingly, in each layer, one of the three principal material axes
of orthotropy lies on a plane parallel to the plate middle-plane (x—y plane) and makes a certain angle, 0,
with the x-axis of the adopted Cartesian co-ordinate system.

An explicit form of the elastic laws that governs the plate material will not be provided at this stage.
Instead, and in a close connection with the formulation presented initially in Soldatos (1988) and gener-
alised later in Soldatos (1993), it is more generally assumed that there exists a strain energy density function
V(& €5 82,715 Vs Vy) SUCh that,

(a oo ) oWy oV oWy Oky oWy oW
X 302y Tyzy Tazy Tay ) = AL VAL VAL YA YA .
! ’ ! Og,  Og,  Oe. 0Oy, Oy, Oy,

(1)

Under these considerations, the present shear deformable, elastic plate model begins with the following
displacement approximation:
Ux,p,z;0) = u(x,y;1) — 2w+ @1 (2)ur (x, 3 7) + P3(2)01 (x, 318),
V(x7y7z; t) = U()C,y; t) - Zwy + ¢2(Z)Ul (xvy; t) + ¢4(Z)ul(x7y; t)v (2)
W(x,y,z:1) = wix,y;1),
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Fig. 1. Notation used for the 2D modelling of symmetric or antisymmetric laminated plates.

where ¢ denotes time. Upon then applying the strain—displacement equations of 3D elasticity, one obtains
the following kinematic relations:

b = e + 2k + Pk + D3k

Py

Sy = ey —+ Zkf, + @21(; —+ ‘p4k§y, & = 07
(3)
ny = exy AF'Zk;; —+ lekfy —+ d5zkj; —+ 453k; + q54kf,
'VXZ = (DII egz + (‘pgejﬂ y}Z = dj,Zef\lrz + @216)727
where a prime denotes ordinary differentiation with respect to the transverse co-ordinate (( ) = (d/dz)( ))
and,

c a a
€x = Uy, k} = W, kx = Ul x, k&w = U1y,
o c _ a __ a __
ey =0y, ky=-—wy, ki=uv,, k=, 4)
C a a
ey =uUy+0x, ki =-2w,, e =u, e =u.

The displacement approximation (2) still contains five unknown displacement functions, three of which
(u, v and w) represent the middle-plane displacement components and have therefore the dimensions of
length. As it also becomes clear from Eq. (4), the other two unknown functions (u; and v;) are still related
to the values that the transverse shear strains acquire on the plate middle plane and are therefore assumed
to be dimensionless quantities. The introduction however of four global shape functions &;(z) (i =
1,...,4), which are supposed to be determined a-posteriori and should evidently have dimensions of length,
is the mathematical description of the fact that the transverse shear strains 7,, and y,, may be interrelated if
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the complexity of the plate material exceeds the bounds of special orthotropy. In this respect, the last two of
Eq. (3) imply that, for any fixed value of z, there may be a linear dependence of the of y,, and y,, values.
Moreover, the pattern of this dependence through the plate thickness is dictated by the derivatives of the
new shape functions ®;(z) and @4(z) that appear in the displacement approximation (2). Hence, the dis-
placement approximation of the previous relevant plate models (Soldatos, 1988; Soldatos and Timarci,
1993; Timarci and Soldatos, 1995) is obtained as a particular case of Eq. (2) by nullifying ®@;(z) and @4(z).
Alternatively, but in mathematical terms equivalently, that previous displacement approximation, which is
more suitable for cross-ply laminates, can be obtained by setting,

¢1 (Z) = —¢3(Z), ¢2(Z) = @4(2). (5)

With this transformation, the difference and the sum of the unknown functions u; and v, are essentially
assigned to represent the values of y,, and y,, values, respectively, on the middle plane of a plate with
specially orthotropic layers.

Following the procedure presented initially in Soldatos (1988) and generalised later in Soldatos (1993),
the generalised force and moment resultants associated with the present elastic plate model are defined as
follows:

c c c " a% a% a%
(Nx’Ny’ny) B /h/z (aex ’a_ey’ﬁexy) dZ,
M2 [ av, oV, o
MEME M) = ook ke |
( ) = [ " (ak; Ok Bk,
"2(an oK A Ok
M MO M M) = ok ke ke Oke.
( MY M ) /m(@kjj’akg’@kg’@kfx dz,
(@0)- [, (5w )
—h/2 ae,gz 7 aefz

With the use of Egs. (1) and (3), as well as the chain rule of partial differentiation, it can then be shown that
these definitions are equivalent to the following:

hy2
NeNeNg) = [ (o)
—h/2
12
(M, My, M) :/ (0, 0y, Tyy)zdz;
vy
Mg M)?y h/2 q)l qj4 Oy Txy (7)
:/ | dz;
My M -2 | Py Dy || Ty O
o _/h/2 ¢/1 <1'>ﬁt Tyz iz
(0 2 | Dy D | 1, .

Under these considerations, application of either Hamilton’s principle or the generalised vectorial ap-
proach presented in Soldatos (1993) yields the following equations of motion:
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N+ NS, = poit — privs + pylin + pg o1,

xy.y

Ni, 4 N, = pob = pyw, + pg 01 + piin,

Xp.x
M;xx + MyC,W + 2M:y,xy = pow — po(Wax + W) + py (it + ) + pilal‘x + P%lbly + pflﬁl,x + pélui’il,ya
M+ My, — O = pylii = py Vo + polin -+ py' B = pi' i, + pyliin + (o' + o5 ™),
Mg+ M, — 08 = 30— pTny + pg i1 + potie — Y+ pp o + (gt pg! i
(8)
The inertia terms that appear in the right hand sides of these equations are defined as follows:
n/2 h/2 h/2
o = / pZdz;  pimo = / p®y®°Fdz;  p" = / p®Z* dz, 9)
—h/2 —h/2 —h/2

where p denotes the material density of the elastic plate considered. It should be further noted that, unlike
the afore-mentioned vectorial approach (Soldatos, 1993), Hamilton’s principle also yields all possible sets
of variationally consistent boundary conditions that can be applied on a plate edge. For the case of a
rectangular flat plate, like the one shown in Fig. 1, the following quantities must be prescribed along the
edges:

atx=0, L, : aty=0, L, :

either u or N,, either v or N,,

either v or Ny, either u or N,,,

either w or (M, + 2M,,, — p,ii either w or (M, + 2M,,, — p,¥ (10)

+pa . — pilin — i), +pw, — pilin — pi'ty),

either u; or M?, either vy or My,

either v, or M, either u; or M,

either w, or M,. either w, or M,.

3. Consideration of interlaminar stress continuity in angle-ply laminate plates

Consider next the case of a rectangular elastic plate made of an arbitrary number, L, of linearly elastic
monoclinic layers. Accordingly, the generalised Hooke’s law within the kth layer of such a laminate

(starting counting from the bottom layer) is given as follows (k = 1,2,... L):
o] [ol on O] [
k -
| = |0t o of| | |. (112
(k) k k k 9
L Ty Q(m) Q(26) Q(66) T
i k k
@] _ [ o]
® 1 1o® o0y | (11b)
| Tx: Qi Oss Pz

where Q’s are the well-known reduced elastic stiffnesses (Jones, 1975; Whitney, 1987).
Introduction of these equations into Eq. (7) yields then the force and moment resultants in terms of the
five degrees of freedom and their derivatives, as follows:



A. Messina, K. P. Soldatos | International Journal of Solids and Structures 39 (2002) 617-635 623

Ny
Ny
NG,
M
M;
M,
M
M
M,
My,
(411 A4 A Bu B B B + Bies Bin + Bies B4 + Bial Bie2 + Biis i
An Ay B Bn By Bia1 + Bass By + B By + Bagi Bagx + B
Ass  Bis B Bes Bisi + Besa Bagy + Bess Bags + Besi Bigs + Bes2
Dy D D Dyy1 + D Dy + Digs Dyp4 + Dig1 D3+ Dig
Dy Dy D121 + Dyes D2 + Do Dy + Dag D13 + Dasa
Des Dig1 + Dessa Digy + Des3 Dis4 + Des D163 + Dgsa
_ sym (Dllll +D6644> < D121 + Daes ) < D11 + Dassa > ( Diga1 + Deeoa )
+2Di614 +Di631 + Desza +D1241 + Desia +D1131 + Disaa
(Dzzzz + Dés33> < Doz + D12 ) ( D32 + Do >
+2Dse3 +Ds6a3 + Des13 +D1633 + Des2s
<D2244 + Dee11 > ( D134 + Dagoa >
+2Ds614 +Di631 + Dsea1
D133 + Dee2
L ( +2Di632 > ]
ou T
v,
Uy + Uy
W
8 —21}} ’ 2
Uy x
U1y
u,
L Uix
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where the appearing extensional, coupling and bending rigidities are defined according to:
h)2 h)2 hy2
Ay = 0Wdz, B,= 0yzdz, By, = 0 ®,dz,
—h/2 —n)2 Y
h/2 h/2 h/2
Dy = 0W2dz, Dy, = 0¥ ®,zdz, Dy, = oV e,9,dz, (13)
—h/2 —h/2 —h/2
h/2

Aijpm = y Qf]k> ¢;7¢:ﬂ dz.
2
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With the use of the 2D constitutive Egs. (12a) and (12b), the equations of motion (8) can be converted into
a set of five simultaneous differential equations for the same number of main unknowns. The number of the
boundary conditions (10) suggests that this will be a 12-order set of partial differential equations, which
may be solved simultaneously when a particular set of boundary conditions is specified at each edge of the
plate. It should be noted however that use of Egs. (12a) and (12b) can be made only after the four global
shape functions involved in the model are specified and, hence, the integrations denoted in Eq. (13) are
performed.

The purpose of this section is to outline a process of making these shape functions capable to satisfy
continuity of displacements and transverse shear stresses at the interfaces of a laminate, the layers of which
obey the constitutive Egs. (11a) and (11b). The process will be outlined for the case of symmetric angle-ply
laminates only and may therefore be considered as a generalisation of the corresponding process outlined in
Timarci and Soldatos (1995) for symmetric lay-ups. As far as antisymmetric angle-ply laminates are con-
cerned, it may further be considered as a generalisation of the process outlined in Messina and Soldatos
(1999a), for corresponding cross-ply lay-ups. Although some of the numerical results shown in Section 5
reveal that this later version of the process is also available to the authors, it will not be presented here for
the sake of brevity.

Hence, consider only the case a laminated plate composed of an odd number (say L = 2N + 1) of linearly
elastic monoclinic layers which are perfectly bonded together. As shown in Fig. 1, denote further with a
superscript “(0)” all quantities referring to the middle layer of the plate and denote further by z, the
transverse co-ordinate of the material interface between the (k4 1)th and the kth layer (k= %1,
+2,...,£N). Consider next the kth layer (k =0, +1, +2,...,4+N) as an independent plate and, in ac-
cordance with the global displacement approximation (2), assume that its displacement field is approxi-
mated as follows:

k k k k k
U9 = uy) — 2w, + o) @y’ + 0¥ ()",
rO = o) — 2w, + 0} @ + o (2)ul” (14)
WwE = k) =y,

In accordance with the constitutive equations the last two terms of Eq. (3) and Eq. (11b), denote also that
transverse shear stresses and strains in the kth layer are related as follows:

k k k k k k k k k
] - [ v a8 et oo

= k k k k k k k k k
(Olet +0lel) (0N + 0Bt Lu

(15)

Then, upon requiring continuity of these interlaminar stresses at z;, and following essentially the procedure
outlined in Timarci and Soldatos (1995) for cross-ply laminates, one obtains the relationship,

k k k 0
k k k 0) |°
o] L a8 ] L
N————
]

The elements of the appearing 2 x 2 matrices [4*¥)] are obtained in accordance with the following recurrence
formula (k = £1,£2,...,£N):
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l(Qi’z%p;“ (@) + 020 (@) (0f 0 (@) +Qi’;><o;“‘><zk>>]
[4®] = (0802 () + X0} (2) (00" () + 00 (20)) L]
- [( kq:l kq:l (Zk) k;l k Zk)) ( (kq:l) Aq:l ( )+ Qk;l 1(kF1) ( k))‘| )

)+ )

(kF1)
(
( l@l k¥1 ( kil (kF1) (Zk ) ( k¥1 (p4k¥1 ( )+qu:1 k¥l)( k))

k
Z (p3

(17)

where, as Eq. (16) itself reveals, [4”)] is a 2 x 2 identity matrix. It should be noted that the upper and the
lower signs appearing in on the right hand side of Eq. (17) are associated with positive and negative values
of k, respectively.

Upon inserting expressions (16) into Eq. (14) and upon, then, requiring continuity of the displacement
components on the z; material interface, one obtains further,

ug{) = ”0 )+ B 0) + ng)vio),

vy) = o) +BY 0 +BPu, (%)
where,
BY = B 1 (o™ @Al + ol @A) — (o @04l + o @0a)], B =0,
BY = B 4 (o™ <zk>A2f” + o @A) = (o (z0al) + o al)], BY =0 o
BY = B 4 (ol ™zl i (@A5™) — (o @Al + ol al)], B =0, v
BY = B 4 (o (2% + ol <zk>A<k*1 )= (@AY + o @4, B =0
Hence, with the use of expressions (16) and (18), the displacement field (14) is finally obtained in the fol-

lowing form:

UW = uéo) —zw, + <P<lk> (z)u(lo) + digk) (2)1750)7
VO =) — 2w, + @ @0 + 2 (20)

where,
o (2) = B + 0" (2)4%) + ¢ (2417,
o(z) = BY + o ()4 + o (2)417, an
o (z) = BY + ¢ ()4 + ¢} (2)4Y |
0 (2) = BY + ¢ ()4} + ¢ ()45

A comparison of the displacement field (20) with the displacement approximation (2) makes it clear that
this is essentially a global displacement approximation suitable for use in association with the five degrees
of freedom shell theor developed 1n the preceding section. In more detail, the five unknown displacement
functions, uo , vo , 0 ,u!"” and v\", of the middle layer of the plate are now the five de rees of freedom of
the rnodel Most importantly, for any set of a posteriori specified shape functions, (p1 (p2 ( ), <p3 ( )
and (p4 ( ) (k=0, £1, £2,. £N), the global displacement approximation (20) is capable of satisfying
the interlaminar continuity conditions of both displacements and transverse shear stresses. It should be
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noted in this respect that the complicated looking form of the recurrence formulas (17) and (19) do not add
any additional difficulties in the computational effort involved during a particular application of the present
shear deformable model. This is because, if necessary, the quantities defined in Egs. (9) and (13) can always
be evaluated numerically by means of a standard numerical routine. The present angle-ply laminated plate
theory preserves therefore all the valuable features of a corresponding layer-wise model but, making use of
only five main unknown quantities, it keeps the computational effort required independent of the number of
layers involved.

4. Cylindrical bending modes of angle-ply laminated plates

An effective way to test the reliability of a 2D model, like the one developed in the preceding sections, is
by performing numerical comparisons with corresponding results of an exact 3D solution, if available, of
a relatively simple elasticity problem. As far as angle-ply laminated plates are concerned, the authors are
however unaware of such a simple, dynamic, 3D elasticity solution. It was therefore decided that such a
reasonably simple testing situation could be reached only after an appropriate extension of the corre-
sponding static, cylindrical bending solution (Pagano, 1970) towards the free vibrations of angle-ply
laminated plates. This dynamic extension of Pagano (1970) elasticity solution is next detailed in this section
and is followed by the corresponding solution obtained on the basis of the present 2D model. The cylin-
drical bending modes of angle-ply laminated plates thus obtained can alternatively be considered as the
axisymmetric free vibration modes of an angle-ply laminated circular cylindrical shell having an infinite
middle-surface radius (Soldatos and Ye, 1995; Timarci and Soldatos, 2000).

4.1. Exact elasticity solution
Consider the elastic plate shown in Fig. 2, which has a constant thickness, / a constant axial length, L,,

but has an infinite width (L, = oo). Like in Fig. 1, the in-plane and normal to the middle-surface co-
ordinate length parameters are denoted with x, y and z, respectively, whereas U, V' and W represent the

AZ<W) x(u)

\\\\v
\.
o
Npao
[0 © 0y
oag
000l
oo/l

/00 o
/50 0f
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/00 0
joo o,
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y(v) >

Fig. 2. Notation used for the 3D modelling of symmetric or antisymmetric laminated plates.
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corresponding displacement components. Moreover, the plate is assumed as being made of an arbitrary
number, L, of linearly elastic monoclinic layers. Accordingly, the principle material axis in each layer is
assumed to form an angle 0 with respect to the x-axis of the adopted Cartesian co-ordinate system. Hence,
the main difference on the present nomenclature from that adopted in Fig. 1 is that the origin of the
Cartesian co-ordinate system shown in Fig. 2 is located at the bottom of lateral plane of the plate.

The cylindrical bending modes of the infinite plate shown in Fig. 2 are the ones that are independent of
the y co-ordinate, namely the ones in which all the plate cross-sections vibrate freely in an identical pattern.
Accordingly, the plate displacement components have the following form:

U(x,y,z;t) = U(x,z; 1),
V(x,y,z;t) = V(x,z1), (22)
W(x,y,z;t) = W(x,z1),

which does not depend on the y co-ordinate parameter. Hence, in each one of the monoclinic layers
considered, the dynamic version of the Navier elasticity equations takes the following form:

Cll Uxx + C13 sz + C16 V,xx + C45 V,zz + CSS sz + C55 Uzz = PU;

Ci6Ue + C36Wo + Co6 Vi + Caa Vo, + Cos W, + CysU . = PI:{, (23)

CysVo + Css Wy + CssU o + C3U . + Cs W, 4 Ca6 V. = pW,

where C’s are the corresponding elastic constants (Pagano, 1970; Jones, 1975; Whitney, 1987).
Eq. (23) are susceptible of an exact solution, provided that both plate edges, x =0 and x = L,, are
subjected to the following set of simply supported boundary conditions:
w=0

’ (24)

0, =Ty = 0.
As can easily be verified, these boundary conditions are exactly satisfied by a displacement field of the form,
U(x,z;t) = u(z) cos(nnx/L,) cos(wt),
V(x,z;t) = v(z) cos(nmx/L,) cos(wt), (25)
W(x,z;t) = w(z) sin(nnx/L,) cos(wt),
in which o represents an unknown natural frequency of vibration and 7 is a positive integer that represents
the wave number of the particular mode along the x direction. Moreover, with the use of the displacement

field (25), the set of the partial differential equations (23) is converted into a corresponding sixth-order set of
simultaneous homogeneous ordinary differential equations, the matrix form of which is as follows:

(—C11m2 + D2C55 + ,0(1)2) (—C16m2 +D2C45) mD(C13 + C55) u(z)
(—C16m2 + D2C45) (—C66m2 + D2C44 + p(/)z) mD(C% + C45) U(Z)
—mD(C13 + C55) —mD(Cg(, + C45) (—C55m2 + D2C33 + pwz) W(Z)
0
=10[, (26)
0

with m = nn/L, and D = d/dz. Eq. (26) can equivalently be expressed into the following form of six first-
order simultaneous ordinary differential equations:

{F(Z)}/ = [G]{F(Z)}v {F(Z)}T = {M,U,W, ulvv,7wl}7 (27)

where, the elements of the 6 x 6 matrix [G ] are given in Appendix A.
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In the case of a homogeneous monoclinic plate, the general solution of Eq. (27) can be expressed in the
form,

{F(2)} =[PNHF(0)}, 0<z<h, (28)

where, {F(0)} denotes the value of the vector {F'} at the bottom lateral plane of the plate. For a given value
of z, the elements of the exponential matrix [P(z)] = exp[(z)G] can be evaluated numerically. By connecting
the solution (28) with the zero traction boundary conditions applied on the plate lateral planes, one obtains
the final 6 x 6 algebraic eigenvalue problem whose solution will provide the natural frequencies and mode
shapes sought. In the present case of a plate involving L monoclinic layers, the set of solutions of the form
(28) obtained for each layer have also to be connected through appropriate continuity conditions. A
corresponding efficient formulation is detailed in Soldatos and Ye (1995) and, for the sake of brevity, will
not be repeated here. In Soldatos and Ye (1995), this formulation was outlined for 3D axisymmetric vi-
brations of a circular cylinder with monoclinic layers. In the limiting case, however, in which the radius of
curvature of the cylinder approaches infinity, this will be reduced to the corresponding formulation that is
appropriate for the plate problem considered in this section. As detailed in Soldatos and Ye (1995) (see also
Fan and Ye (1990)), this yields the solution of the vibration problem considered by making use of 6 x 6
matrices only, regardless of the total number, L, of the monoclinic layers involved.

4.2. Solution based on the present two-dimensional model

As far as the present 2D plate model is concerned, the simply supported edge boundary conditions that
correspond to 3D boundary conditions (24) are as follows (at x = 0 and x = L,):

w=0,
N¢=Ng, =0, (29)
M; =M} =M}, =0.

In the context outlined in the preceding subsection, the following displacement field:

(u,v,up,vy) = AW cos (@) cos(wt),
" (30)

w =A™ sin (”L—’”) cos(wt),
satisfies exactly the boundary conditions. Hence upon specialising the Navier-type form of Eq. (8) in ac-
cordance with the present vibration assumptions and, then, making use of the displacement model (30), one

obtains the following eigenvalue problem:

(K- o®™M)X =0, X= (4", AV 4™ g0 g0)T (31)
the stiffness and mass matrices of which are as follows (for m # 0):
rAn Ais  —mBu Bii1 + 0Biss Bigy + 0B113 T
Aes  —mBig Bis1 + 0Bgsa 0B163 + Bee2
m*Dy —m (D11 + 0De4) —m(Dig; + 0Dn13)
K = m? sym < D111 + 26Di614 + 6Dggaa > ( Dig12 + 6Dgsaa + 0D1131 + 6D)634 > 7
+(0A 4444 + 2044514 + Assi1) /m? +(Aasar + 0Assa1 + 0Aaga + 6Assza) /m?
0D1133 + 20D1632 + Deen2
< +(Aaan + 204us3; + 0Ass33) /m” )

(32)
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po 0 —mp 25 opq!
Po 0 dpg' ;'
M — po+m’py  —mp}! —mdpy' . (33)
sym Péz +opt2 5(,0;131 n ,0%141)
P+ opg

Here m = nn/L, whereas the appearing J-index can be assigned the values 0 and 1. A zero value of J-
operator is associated with choices of the global shape functions that, as they appear in Eq. (2), violate the
continuity of the interlaminar shear stresses. The value 6 = 1 is associated with choices of the local shape
functions that yield continuous interlaminar shear stresses, in the sense described in Section 3.

5. A numerical test

The efficiency of the present, general, 2D model can be tested only after particular forms are assigned to
the shape functions involved. In the present study, the 6 = 0 value of the d-index that appears in Egs. (32)
and (33) is only associated with the choice,

431 = 452 :Z(l —422/3/’!2),

34
By =Py =0, (34)

which results into a conventional PSDPT that yields discontinuous interlaminar stresses (PSDPTy;). In this
connection, the 6 = 1 value is associated with the choice,

o = ol = o) = o) = =(1 - 42 /38, >

which results into an advanced PSDPT that satisfies continuity at interlaminar stresses (PSDPT;). It is
denoted however that, despite their difference, both the PSDPTy and the PSDPT, satisfy the zero shear
traction boundary conditions imposed on the lateral planes of the plate. Hence, none of these theories needs
the use of a shear correction factor in the sense requited by their uniform shear deformable counterparts.

Under these considerations, the numerical results presented in this section have a twofold objective.
Firstly, to test the effectiveness of the 2D model introduced in Sections 2 and 3 by comparing its predictions
against corresponding 3D elasticity results obtained for cylindrical bending vibration modes. Afterwards,
to investigate the reasons that possibly introduce discrepancies between corresponding natural frequencies
obtained on the basis of the PSDPTy, and PSDPT s models. To this end the eigenfunctions of both of these
2D models are plotted and carefully examined in comparisons with their relevant 3D elasticity counter-
parts.

Unless it is not differently specified, the following material properties are used for most of the numerical
tests:

E1 = 25E2 = 25E3; G12 = G13 = 0.5E2; G23 = 0.2E2; Vip = V13 = U3 = 0.25 (36)

with the relevant geometric parameters indicated in each one of the table headings. Finally, the dimen-
sionless frequency parameter employed is defined as follows:

0
o' = wh, |—. 37
VG (37)

Tables 1 and 2 compare natural frequencies of two-layered antisymmetric and three-layered symmetric
laminates, respectively, that correspond to bending vibrational modes, namely frequencies whose w-mode-
shapes component is dominant with respect to its in-plane counterparts (u, v). The comparison is presented
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Table 1

Lowest frequency parameter, o*, as a function of the lamination angle (pattern: [+60/—0]; L,/h =10; n = 1)
0 (°) 3D PSDPT, PSDPTy;
0 0.16489 0.16484 0.16484
15 0.11541 0.11615 0.11583
30 0.088013 0.089233 0.088461
45 0.065634 0.066363 0.065839
60 0.048226 0.048374 0.048256
75 0.040409 0.040399 0.040421
90 0.039250 0.039235 0.039235

Table 2

Lowest frequency parameter, o*, as a function of the lamination angle (pattern: [+6/—60/+0]; L,/h = 10; n = 1)
0 (°) 3D PSDPT, PSDPTy;
0 0.16489 0.16484 0.16484
15 0.15232 0.15231 0.15330
30 0.12396 0.12401 0.12636
45 0.091114 0.091150 0.092959
60 0.059879 0.059874 0.060344
75 0.041722 0.041706 0.041754
90 0.039250 0.039235 0.039235

by using different lamination angles. Both Tables 1 and 2 reveal an excellent agreement between the 2D
results and their exact 3D elasticity counterparts. However, it is evident that the PSDPT,. model yields
frequencies that are closer to the exact elasticity ones in the case of the symmetric stacking pattern (Table
2), for which there in no bending—extension coupling due to lamination (see, also Messina and Soldatos
(1999a)). Contrary to this, the PSDPTy, model is more accurate in case of the two-layered antisymmetric
laminates (Table 1) for which that bending-stretching coupling has a profound effect. Moreover, between
the two frequencies predicted by using PSDPT,, and PSDPTy,, it is always the lowest one that is the nearer
to the corresponding exact 3D elasticity prediction. These conclusions are reinforced from the results
presented in Table 3, which considers [45°/—45°] and [45°/—45°/45°] plates and compares corresponding
lowest frequency parameters obtained by increasing the wave number. These comparisons make again
evident that, in general, the PSDPT, (PSDPT4) model behaves better in the case of symmetric (anti-
symmetric) laminates. An exception to this rule appears to be when n = 4 for symmetric laminates, where

Table 3
Lowest frequency parameter, »*, as a function of the wave number (4/L, = 0.1)
n 3D PSDPT,, PSDPTy;,
[45°/—45°] 1 0.065634 0.066363 0.065839
2 0.23545 0.24492 0.23808
3 0.46217 0.49924 0.47222
4 0.71412 0.80426 0.73782
[45°/—45°/45°] 1 0.091114 0.091150 0.092959
2 0.27537 0.27637 0.28489
3 0.48913 0.49535 0.50487
4 0.72074 0.74126 0.73951
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Table 4

Lowest frequency parameter, o, as a function of the ratio G /E, (L,/h = 10;n = 1)
Gn/E; [30°/-30°] [30°/-30°s

PSDPT,, PSDPT,, A% PSDPT,, PSDPT,, A%

0.50 0.089091 0.089091 0.00 0.13444 0.13444 0.00
0.45 0.089110 0.088999 0.12 0.13403 0.13406 -0.02
0.40 0.089131 0.088902 0.26 0.13352 0.13367 —0.11
0.35 0.089154 0.088800 0.40 0.13288 0.13326 -0.29
0.30 0.089180 0.088693 0.55 0.13203 0.13283 —0.61
0.25 0.089208 0.088580 0.70 0.13088 0.13239 —1.15
0.20 0.089233 0.088461 0.87 0.12920 0.13192 —-2.11

Table 5

Lowest frequency parameter, o, as a function of the ratio E,/E; (L,/h=10; n =1)
E\/E, (30°/-30° [30°/—30°4

PSDPT,, PSDPT,, A% PSDPT,, PSDPT,, A%

1 0.042172 0.042267 —0.23 0.042236 0.042326 —0.21
5 0.059826 0.059879 -0.09 0.070376 0.070803 —0.61
10 0.069467 0.069353 0.16 0.091921 0.092884 —1.05
20 0.083396 0.082861 0.64 0.11939 0.12153 -1.79
25 0.089233 0.088461 0.87 0.12920 0.13192 —-2.11
30 0.094597 0.093575 1.08 0.13743 0.14071 -2.39
40 0.10426 0.10270 1.50 0.15058 0.15491 —2.88

the PSDPTy, prediction is better than that of the PSDPT,; model. It is however again observed that, be-
tween two different frequency predictions, the lowest one is always nearer to its corresponding exact 3D
elasticity counterpart.

Tables 4 and 5 compare further corresponding lowest natural frequencies of plates having 2 and 12
layers, respectively, in an antisymmetric stacking pattern with a lamination angle 6 = 30°. Apart for the
transverse shear modulus (G,;) in Table 4 and the longitudinal Young’s modulus (E,;) in Table 5, the re-
maining material constants employed are those shown in Eq. (36). Table 4 reveals that the percentage
discrepancy between the PSDPT; and the PSDPT frequencies is zero when G,; = Gy3. This is due to the
fact that, in this case, there is no discontinuity of interlaminar transverse shear stresses and, therefore, both
models are equivalent. However, the percentage discrepancy of corresponding results obtained by the two
models becomes more evident with decreasing the ratio G»;/E,. This discrepancy never exceeds 1%, in the
case of two layers, but can proceed beyond 2% in the case of 12-layered plates. Similar observations can be
drawn from the results compared in Table 5. There, the percentage difference of corresponding frequencies
is negligible for small stiffness ratios, namely for cases in which the layers constitution does not deviate
considerably from that of an isotropic material, but is again increasing with increasing F,/E,. Moreover,
the sign of the percentage errors denoted in both Tables 4 and 5 changes from positive to negative, when
moving from the two- to the 12-layered plates. This shows again that the PSDPTy; is slightly more accurate
in the case of the two-layered plate. The PSDPT, is however considerably more accurate and should
therefore be preferred in the case of the 12-layered plate, in which the afore-mentioned effect of the bending
extensional coupling due to lamination is considerably weakening.

In an attempt to verify further the above observations (Tables 1-5), a comparison was decided to be
made of a few of the eigenfunctions associated to corresponding eigenvalues of the three models employed
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Fig. 3. (a—d) Shapes of in-plane eigenfunction components through the thickness of the laminate (refer Table 3). PSDPTy, (---),
PSDPT (), 3D (—).

(PSDPTg,, PSDPT,, 3D). This comparison was realised by scaling the corresponding eigenfunctions until a
reasonable graphic match was obtained. The w-part of mode shapes displayed is thus not shown, in all of
the cases considered in Fig. 3, due to the excellent match achieved for both of the 2D and the exact 3D
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eigenfunctions. Hence, the displayed comparisons are attempted by plotting the through-thickness distri-
bution of the in-plane components only of corresponding mode shapes. Accordingly, Fig. 3 depicts the in-
plane parts of the eigenfunctions that correspond to certain the particular natural frequencies reported in
Table 3. In more detail, Fig. 3(a—d) deal with laminates having an antisymmetric and a symmetric stacking
pattern, respectively. These figures show clearly that the 2D model that yields the most accurate natural
frequency is always the one that achieves the smallest in-plane displacement deviation from its exact 3D
elasticity counterpart. Hence, as was expected after the afore-mentioned observations, the most successful
of the two 2D models is the PSDPTy, in the case of a two-layered lay-up (Fig. 3(a) and (b)) and the
PSDPT,; in the case of a three-layered symmetric lay-up (Fig. 3(c) and (d)). These observations suggest that
there may be a need to look for new shape functions that could model more accurately the in-plane dis-
placement distributions through the thickness of laminates with a small number of layers arranged in an
antisymmetric lay-up.

6. Closure

This paper presented a 2D theory that uses only five unknown displacement functions and is able to
account for the continuity of interlaminar shear stresses in laminated plates made of monoclinic elastic
layers placed in a general, arbitrary, stacking pattern. The governing equations of motion have been ob-
tained by using a new generalised vectorial approach (Soldatos, 1993) but also by applying Hamilton’s
principle, which made also available the full set of relevant variationally consistent sets of edge boundary
conditions. The effectiveness of this 2D dynamical model was verified by employing a certain type of shape
functions that are used quite frequently in this kind of dynamic analyses (see Eq. (34)), and comparing its
natural frequency predictions with corresponding predictions due to an exact 3D elasticity analysis. This is
essentially the dynamic extension of the corresponding, static, cylindrical bending solution due to Pagano
(1970).

These comparisons revealed that this specific version of the new model is more accurate than its 2D
counterpart that violates continuity of interlaminar stresses, at least in cases of angle-ply laminates that do
not exhibit strong bending—extension coupling due to lamination. This observation that, when dealing with
cross-ply laminates, was also pointed out in Messina and Soldatos (1999a), is clearly in favour of the
present model in many practical situations in which this bending—stretching coupling is zero or very small.
Examples of such practical situations refer to multilayered laminate constructions, the very many layers of
which are arranged in either a symmetric or even an antisymmetric angle-ply (or cross-ply) lay-up. It is
however believed that the present model can be further improved in cases that, as the afore-mentioned two-
layered antisymmetric cross- or angle-ply examples, the laminate considered exhibits a strong bending—
extension coupling. This may be achieved by searching for new shape functions that could fit better the
actual in-plane displacement distributions through the thickness of an antisymmetric laminate with a small
number of layers.
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Appendix A

The non-zero elements of the matrix [G] that appears in Eq. (27) are as follows:
G = Gys = Gy = 1,
Gy = (X Cay — m*(C11Cas — C16Cis)) /g, Gan = (—1*Cus + m*(CasCes — C16Cua)) /g,
Gsi = (—2°Cys +m*(CusCy — C16Css)) /g, Gsa = (A*Css — m*(CssCes — C16Cas)) /3, (A.1)
Gas = m(Cas(Ci3 + Css) — Cus(Cas + C3)) /g,  Gss = m(CssCss + Cy5C13) /g,
Ges = (=12 +m*Css)/Cy, G = m(Ci3 + Css)/Cxz,  Ggs = m(Cs + Cas)/Caa,

where /> = w’p and g = C; — CssCu.
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